Relative Flux Homomorphism in Symplectic Geometry

نویسنده

  • YILDIRAY OZAN
چکیده

In this work we define a relative version of the flux homomorphism, introduced by Calabi in 1969, for a symplectic manifold. We use it to study (the universal cover of) the group of symplectomorphisms of a symplectic manifold leaving a Lagrangian submanifold invariant. We show that some quotients of this group are stable under symplectic reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended flux maps on surfaces and the contracted Johnson homomorphism

On a closed symplectic surface Σ of genus two or more, we give a new construction of an extended flux map (a crossed homomorphism from the symplectomorphism group Symp(Σ) to the cohomology group H(Σ;R) that extends the flux homomorphism). This construction uses the topology of the Jacobian of the surface and a correction factor related to the Johnson homomorphism. For surfaces of genus three or...

متن کامل

Enlarging the Hamiltonian Group

This paper investigates ways to enlarge the Hamiltonian subgroup Ham of the symplectomorphism group Symp(M) of the symplectic manifold (M,ω) to a group that both intersects every connected component of Symp(M) and characterizes symplectic bundles with fiber M and closed connection form. As a consequence, it is shown that bundles with closed connection form are stable under appropriate small per...

متن کامل

iv : d g - ga / 9 60 50 03 v 1 5 M ay 1 99 6 Flux homomorphism on symplectic groupoids ∗

For any Poisson manifold P , the Poisson bracket on C∞(P ) extends to a Lie bracket on the space Ω(P ) of all differential one-forms, under which the space Z(P ) of closed one-forms and the space B(P ) of exact one-forms are Lie subalgebras. These Lie algebras are related by the exact sequence: 0 −→ R −→ C∞(P ) d −→ Z(P ) f −→ H(P,R) −→ 0, where H(P,R) is considered as a trivial Lie algebra, an...

متن کامل

Crossed Flux Homomorphisms and Vanishing Theorems for Flux Groups

We study the flux homomorphism for closed forms of arbitrary degree, with special emphasis on volume forms and on symplectic forms. The volume flux group is an invariant of the underlying manifold, whose non-vanishing implies that the manifold resembles one with a circle action with homologically essential orbits.

متن کامل

Quantum products for mapping tori and the Atiyah-Floer conjecture

in symplectic Floer homology. Both were discovered by Donaldson. They are well defined up to an overall sign. The homomorphism (1) can be interpreted as a relative Donaldson invariant on a 4-manifold with boundary. In other words, this product is obtained by counting anti-self-dual connections over a 4-dimensional cobordism with n+ 1 cylindrical ends corresponding to Yfj . The second homomorphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003